Submicromolar Ag⁺ increases passive Na⁺ permeability and inhibits the respiration-supported formation of Na⁺ gradient in *Bacillus FTU* vesicles

Anna L. Semeykina and Vladimr P. Skulachev

Department of Bioenergetics, A.N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State
University, Moscow 119899, USSR

Received 7 June 1990

The effect of Ag^+ on Na^+ pumping by Na^+ -motive NADH-quinone reductase and terminal oxidase has been studied in *Bacillus FTU* inside-out vesicles. Very low concentrations of Ag^+ ($C_{1/2}=1\times10^{-8}M$ or 2×10^{-12} g ion mg protein⁻¹) are shown to inhibit the uphill Na^+ uptake coupled to the oxidation of NADH by fumarate or of ascorbate + TMPD by oxygen but exert no effect on the H^+ uptake by the H^+ -motive respiratory chain. Low Ag^+ also induces a specific increase in the Na^+ permeability of the vesicles. HQNO, added before and not after Ag^+ , prevents the Ag^+ -induced permeability increase, with effective HQNO concentrations being similar to those inhibiting the uphill Na^+ -uptake coupled to the NADH-fumarate oxidoreduction. Reduction of terminal oxidase by ascorbate + TMPD in the presence of cyanide sensitizes the Na^+ permeability to Na^+ . It is suggested that low Na^+ known as a specific inhibitor of electron transport by the Na^+ -motive NADH-quinone reductase, uncouples the electron and Na^+ transports so that the Na^+ -modified NADH-quinone reductase operates as an Na^+ channel rather than an Na^+ pump. This effect is discussed in connection with the antibacterial action of Na^+ .

Bacterial sodium energetics; Silver; NADH-quinone reductase; Terminal oxidase

1. INTRODUCTION

As it has recently been found in our group [1-3], the alkalo- and halotolerant *Bacillus FTU* has two respiratory chains, namely H^+ -motive and Na^+ -motive. These two chains strongly differ in their sensitivities to inhibitors. The Ag^+ effect was found to be the most demonstrative. As shown by Asano et al. [4], a very low $[Ag^+]$ specifically inhibits the Na^+ -motive NADH-quinone reductase of *Vibrio alginolyticus*. As it was shown in our laboratory in the experiments on the *Bacillus FTU* vesicles, Ag^+ strongly suppresses the respiration-supported uphill transport of Na^+ at a concentration as low as 1×10^{-8} M, while that of H^+ is not affected by Ag^+ taken even at a 100-fold higher concentration [3].

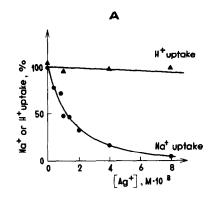
Below it will be shown that such small amounts of Ag⁺ specifically increase the passive Na⁺ permeability of the *Bacillus FTU* membrane. The effect is apparently mediated by an Ag⁺ binding to component(s) of the Na⁺-motive NADH-quinone reductase, for the Ag⁺-induced increase in the Na⁺ conductance can be prevented by adding low concentrations of HQNO, specific inhibitor of this enzyme.

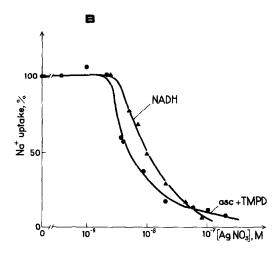
Correspondence address: V.P. Skulachev, Department of Bioenergetics, A.N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, Moscow 119899, USSR

Abbreviations: CCCP, carbonyl cyanide m-chlorophenylhydrazone; DEA, diethylamine; HQNO, 2-heptyl-4-hydroxyquinoline N-oxide; TMPD, N,N,N',N'-tetramethyl p-phenylene diamine; TPT, triphenyltin acetate

2. MATERIALS AND METHODS

Bacillus FTU, isolated in our laboratory [1,2], was used. The growth medium contained 0.5 M NaCl, 10 mM KCl, 15 mM (NH₄)₂SO₄, 2 mM KH₂PO₄, 5 mM MgSO₄, 1×10^{-5} M FeSO₄, 0.1 mM EDTA, 50 mM Tris-HCl, pH 8.6, and 60 mM sodium succinate as the only energy and carbon source; $t^{\circ} = 37^{\circ}$ C, aerobic conditions.


To obtain ultrasonic inside-out subcellular vesicles, the previously described method [2] was employed.


The Na $^+$ content in the subcellular vesicles was assayed by means of the gel-filtration and centrifugation procedure according to Penefsky [5]. The process of the respiratory chain dependent Na $^+$ uptake was initiated by adding TMPD or NADH. To arrest the reaction, 0.04 ml of the incubation mixture was centrifuged in a gel-filtration column (D=10 mm) containing Sephadex G-50 coarse preequilibrated with 0.1 M Tris-H₂SO₄ and 10 mM MgSO₄, pH 8.2. The eluate was diluted 10-fold with bidistilled water and [Na $^+$] was measured with a PFM flame photometer. The above procedure was found to decrease extravesicular [Na $^+$] by factor 5×10^3 . To measure the passive Na $^+$ permeability of the membrane of Bacillus FTU vesicles, 5 mM Na₂SO₄ was added to the vesicles isolated and incubated without added Na $^+$ (initial [Na $^+$] in the medium was found to be 0.2 mM).

Oxygen consumption was measured with a standard oxygen Clarktype electrode. Intravesicular acidification was monitored by acridine orange fluorescence quenching measured with a MPF-4 Hitachi fluorimeter (excitation at 493 nm, measurement at 539 nm). Fluorimetric measurements were performed by Dr M.L. Vaghina.

3. RESULTS

Fig. 1A shows that very low concentrations of Ag⁺ completely inhibit the uphill Na⁺ uptake by *Bacillus FTU* vesicles, supported by the oxidation of NADH by

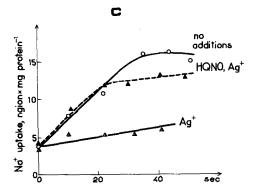


Fig. 1. Effect of Ag+ upon the respiratory chain-supported Na+ and H⁺ uptakes by inside-out subcellular vesicles of Bacillus FTU. (A) NADH oxidation by fumarate. Na+ uptake: the incubation mixture contained 0.1 M K₂SO₄, 10 mM MgSO₄, 2.5 mM Na₂SO₄, 50 mM Tricine-KOH, pH 8.2, 50 mM DEA acetate, 10 mM KCN, 1×10^{-5} M CCCP, 5 mM potassium fumarate and vesicles, 4 mg protein ml-1. At zero time, 2 mM NADH (potassium salt) was added. H+ uptake: the incubation mixture contained 0.1 M K2SO4, 10 mM MgSO₄, 5 mM Na₂SO₄, 50 mM tricine-KOH, pH 8.2, 15 mM KCN, 6×10^{-6} M acridine orange, 4×10^{-7} M valinomycin, 1 mM NADH and vesicles, 0.6 mg protein ml⁻¹. At zero time, 5 mM potassium fumarate was added. (B) Oxidations of NADH by fumarate or of ascorbate + TMPD by oxygen. NADH oxidation: the incubation mixture contained 0.1 M K₂SO₄, 10 mM MgSO₄, 2.5 mM Na₂SO₄, 50 mM tricine-KOH, pH 8.2, 50 mM DEA acetate, 2×10^{-5} M CCCP, 10 mM KCN and vesicles, 4.9 mg protein ml⁻¹. At zero time, 2 mM NADH was added. Ascorbate oxidation: the incubation mixture, as in the NADH experiment, but the CCCP concentration was 1×10^{-5} M, KCN was absent and 15 mM potassium ascorbate

fumarate $(C_{1/2} = 1 \times 10^{-8} \text{ M})$. The H⁺ transport, also coupled to the NADH-fumarate oxidoreduction, is resistant to such Ag⁺ concentrations. In another experiment, it was found that even 100-fold higher [Ag⁺] has no effect on the uphill H⁺ uptake (not shown).

Such a specific effect of Ag⁺ could be explained by the inhibition of the Na⁺-motive NADH-quinone reductase, discovered in *V. alginolyticus* by Asano et al. [4]. Surprisingly, subsequent experiments showed that Ag⁺ also interferes with the uphill Na⁺ uptake driven by Na⁺-motive terminal oxidase. Fig. 1B shows the Ag⁺ titrations of the Na⁺ uptake supported by the oxidations of NADH by fumarate or of ascorbate + TMPD by oxygen. In fact, the latter system is even slightly more sensitive to Ag⁺ than the former one.

To explain the effect of Ag⁺ on the ascorbate oxidation-supported Na⁺ transport, it might be suggested that Ag⁺ inhibits the Na⁺-motive oxidoreduction in the terminal segment of the respiratory chain just as it does in its initial segment. Two observations, however, argue against this suggestion.

- (i) Low Ag⁺ concentrations, used to inhibit the ascorbate oxidation-supported Na⁺ transport, were without any measurable effect on the oxidation rate (not shown).
- (ii) HQNO (which inhibits the Na⁺-motive NADH-quinone reductase but has no effect on the terminal oxidase [3]) was found to prevent Ag⁺ inhibition of the Na⁺ uptake coupled to ascorbate oxidation (Fig. 1C).

The latter finding suggests that the Ag⁺ effect on the Na⁺ transport by the terminal oxidase is a consequence of the Ag⁺ interaction with the initial step of respiratory chain.

Subsequent experiments showed that Ag⁺ increases the passive flux of Na⁺ through the *Bacillus FTU* membrane.

To measure Na⁺ permeability, the *Bacillus FTU* vesicles were isolated in a Na⁺-free medium and added to the incubation mixture containing 5 mM Na₂SO₄. The passive Na⁺ equilibration between the outer and intravesicular solutions was shown to take 1–3 min. This value varied in different preparations of the vesicles. The variations seemed to be due to a partial loss of factors F_1 of the membrane ATPase. In preparations showing high Na⁺ permeability, the F_0 inhibitors, dicyclohexylcarbodiimide or TPT, were found to suppress the Na⁺ equilibration. An example of this kind is shown in Fig. 2A. It is seen that TPT increases the $t_{1/2}$ value of the Na⁺ equilibration from 20 to 60 s. In the same experiment, it was shown that Ag⁺, added

was present. The protein concentration was 5.3 mg·ml⁻¹. The reaction was started by adding 0.5 mM TMPD. 100%, 24 and 20 ngion Na⁺·min⁻¹·mg protein⁻¹ for NADH and ascorbate + TMPD, respectively. (C) Ascorbate oxidation: the incubation mixture as in B. The protein concentration, 5 mg·ml⁻¹. Additions, 4×10^{-6} M HQNO and 1×10^{-7} M AgNO₃. HQNO was added before AgNO₃.

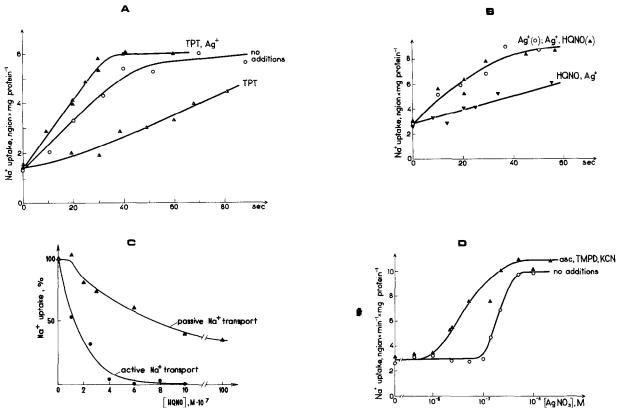


Fig. 2. Effects of Ag^+ and HQNO upon the passive Na^+ permeability of Bacillus FTU vesicles. (A) The incubation mixture contained 0.1 M Tris-H₂SO₄, pH 8.2, 10 mM MgSO₄, 50 mM DEA acetate, 1×10^{-5} M CCCP, 0.2 mM Na^+ and vesicles, 5.6 mg protein \cdot ml⁻¹. At zero time, the mixture was supplemented with 5 mM Na_2SO_4 . Other additions were 5×10^{-6} M TPT and 1×10^{-6} M AgNO₃. (B) The incubation mixture was as in A but 5×10^{-6} M TPT is present in all the samples. Additions: (\odot) 1×10^{-6} M AgNO₃; (\triangle) AgNO₃ and then (after 1.5 min) 4×10^{-6} M HQNO; (\blacktriangledown) HQNO and after 1.5 min AgNO₃. (C) Comparison of the inhibitory effects of HQNO on the active Na^+ transport coupled to NADH-fumarate oxidoreduction and preventing HQNO action on the Ag^+ -stimulated passive Na^+ transport in Bacillus FTU vesicles. Active transport, incubation mixtures: 0.1 M K₂SO₄, 10 mM MgSO₄, 2.5 mM Na_2SO_4 , 50 mM tricine-KOH, pH 8.2, 50 mM DEA acetate, 10 mM KCN, 2 mM NADH, 5 mM fumarate, 1×10^{-5} M CCCP and vesicles, 5.2 mg protein \cdot ml⁻¹. 100%, 36 ng ion $Na^+ \cdot$ min \cdot mg protein \cdot Passive transport, as in Fig. 2A but 5×10^{-6} M TPT was added to all the samples. Vesicles were preincubated with various HQNO concentrations for 1.5 min, and then 1×10^{-6} M AgNO₃ and 5 mM Na_2SO_4 , were added. Na^+ concentration before the Na_2SO_4 addition was 0.2 mM. Protein concentration, 4.5 mg \cdot ml⁻¹, 100%, 8 ngion $Na^+ \cdot$ min⁻¹ mg protein⁻¹. (D) Incubation mixture as in Fig. 2A. Additions: 15 mM ascorbate, 0.5 mM TMPD and 10 mM KCN. Protein concentration: 4.9 mg \cdot ml⁻¹.

after TPT, strongly facilitates the passive Na⁺ flux ($t_{1/2}$ becomes smaller than 20 s).

The Ag^+ effect proved to be sensitive to HQNO added before Ag^+ . But the addition of HQNO after Ag^+ was ineffective (Fig. 2B). $C_{1/2}$ of the abovementioned HQNO effect was found to be of the same order of magnitude as that of the inhibiting action of HQNO on the active Na^+ uptake supported by NADH-fumarate oxidoreduction (Fig. 2C). The HQNO action cannot be attributed to the Ag^+ binding to HQNO since a 10-fold excess of Ag^+ over HQNO, added after HQNO, failed to cause any measurable increase in the Na^+ permeability (not shown).

Reduction of the terminal step of the respiratory chain by ascorbate + TMPD in the presence of cyanide proved to be favourable for the Ag⁺-induced increase in the passive Na⁺ permeability (Fig. 2D). Cyanide without ascorbate and TMPD was ineffective (not shown).

4. DISCUSSION

The above data indicate that Ag^+ increases the Na^+ permeability of the *Bacillus FTU* membrane. This effect may explain the inhibition of the respiratory chainlinked Na^+ accumulation in inside-out vesicles. Apparently, H^+ permeability is not affected by low Ag^+ since it does decrease the H^+ pumping (Fig. 1A).

The Ag⁺-induced Na⁺ permeability increase is prevented by very low [HQNO] (which is known to specifically inhibit the Na⁺-motive NADH-quinone reductase [6,7]), the fact pointing to involvement of this enzyme in the Ag⁺ effect on Na⁺ permeability. One more piece of evidence in favour of this suggestion is that Ag⁺ specifically inhibits the electron transfer by the Na⁺-motive NADH-quinone reductase of *Vibrio alginolyticus* [4].

One may propose that the combination of Ag⁺ with NADH-quinone reductase not only inhibits its redox

activity but also modifies its Na⁺-transporting part in such a way that it becomes capable of transmembrane Na⁺ transport non-coupled to electron transport.

Apparently HQNO, another inhibitor of the Na⁺-motive NADH-quinone reductase, prevents the above-mentioned modification of this enzyme by Ag⁺. This is why HQNO abolishes the Ag⁺-induced inhibition of the active Na⁺ uptake supported by the Na⁺-motive terminal oxidase (Fig. 1C).

It is interesting that the reduction of the cyanideinhibited terminal oxidase by ascorbate + TMPD proved to be favourable for the Ag⁺-induced Na⁺ permeability increase. This may be due to complexation between the Na⁺-motive NADH-quinone reductase and the reduced terminal oxidase; this complex, for some reason, is, apparently, more sensitive to Ag⁺ than is the reductase per se or its complex with oxidized oxidase.

It should be noted that half-maximal concentrations of Ag⁺ decreasing the active Na⁺ pumping (Fig. 1) are somewhat lower than those increasing the passive Na⁺ permeability (Fig. 2) or inhibiting the activity of NADH-quinone reductase [4]. This is not surprising since complete inhibition of Na⁺ accumulation because of the increase in the Na⁺ permeability may occur when only a small portion of the NADH-quinone reductase pool combines with Ag⁺.

One should stress that the above-described inhibition of the Na⁺ pumping, regardless of its mechanism, proceeds at very low Ag⁺ concentration ($C_{1/2}$ at about 1×10^{-8} M or about 2×10^{-12} gion Ag⁺·mg protein⁻¹;

see Fig. 1B). It means that traces of Ag⁺ in the medium can, in fact, be inhibitory for bacteria employing the Na⁺ cycle, i.e. the system which is assumed to be responsible for the adaptation of microorganisms to unfavourable conditions where the H⁺ cycle is not operative [8]. This fact may explain the well-known bactericidal effect of Ag⁺ and must be helpful in a search for new methods of antibacterial therapy in the case of Vibrio cholera, Vibrio parahaemolyticus, Klebsiella pulmoniae, Salmonella typhimurium, etc., in which the Na⁺ cycle has already been shown, and also with respect to some other pathogenic bacteria thus far not studied in this regard.

REFERENCES

- [1] Verkhovskaya, M.L., Semeykina, A.L. and Skulachev, V.P. (1988) Dokl. Acad. Nauk SSSR 303, 1501-1503 (Russ.).
- [2] Semeykina, A.L., Skulachev, V.P., Verkhovskaya, M.L., Bulygina, E.S. and Chumakov, K.M. (1989) Eur. J. Biochem. 183, 671-678.
- [3] Kostyrko, V.A., Semeykina, A.L., Skulachev, V.P., Smirnova, I.A., Vaghina, M.L. and Verkhovskaya, M.L. (1990) Eur. J. Biochem. (in press).
- [4] Asano, M., Hayashi, M., Unemoto, T. and Tokuda, H. (1985) Agric. Biol. Chem. 49, 2813-2817.
- [5] Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891-2899.
- [6] Tokuda, H. and Unemoto, T. (1982) J. Biol. Chem. 257, 10007-10014.
- [7] Tokuda, H. and Kogure, K. (1989) J. Gen. Microbiol. 135, 703-709.
- [8] Skulachev, V.P. (1988) Membrane Bioenergetics, Springer-Verlag, Berlin.